A Time-Reversible Variable-Stepsize Integrator for Constrained Dynamics

نویسندگان

  • Eric Barth
  • Benedict J. Leimkuhler
  • Sebastian Reich
چکیده

This article considers the design and implementation of variable-timestep methods for simulating holonomically constrained mechanical systems. Symplectic variable stepsizes are briefly discussed, we then consider time-reparameterization techniques employing a time-reversible (symmetric) integration method to solve the equations of motion. We give several numerical examples, including a simulation of an elastic (inextensible, unshearable) rod undergoing large deformations and collisions with the sides of a bounding box. Numerical experiments indicate that adaptive stepping can significantly smooth the numerical energy and improve the overall efficiency of the simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration forN - body

Multiple time stepping can be applied to the leapfrog/Stt ormer/Verlet integrator so as to eeect variable stepsize. The strategy maintains the symplecticness, time-reversibility, and second-order accuracy of leapfrog. This method can be applied to pairwise interactions by partitioning them into distance classes and smoothly decomposing the potential energy into the sum of potential energy funct...

متن کامل

Symplectic Numerical Integrators in Constrained Hamiltonian Systems

Recent work reported in the literature suggests that for the long-time integration of Hamiltonian dynamical systems one should use methods that preserve the symplectic (or canonical) structure of the ow. Here we investigate the symplecticness of numerical integrators for constrained dynamics, such as occur in molecular dynamics when bond lengths are made rigid in order to overcome stepsize limi...

متن کامل

Symplectic Integration with Variable Stepsize

There is considerable evidence suggesting that for Hamiltonian systems of ordinary differential equations it is better to use numerical integrators that preserve the symplectic property of the ow of the system, at least for long-time integrations. We present what we believe is a practical way of doing symplectic integration with variable stepsize. Another idea, orthogonal to variable stepsize, ...

متن کامل

A parallel multiple time-scale reversible integrator for dynamics simulation

We investigate parallelizable schemes for simulating dynamics of conservative systems admitting a decomposition into weakly coupled subsystems. A new method, related to Reversible Averaging [20], is introduced for constrained and unconstrained dynamics. Stability issues are discussed.

متن کامل

Efficient simulation of unsaturated flow using exponential time integration

We assess the performance of an exponential integrator for advancing stiff, semidiscrete formulations of the unsaturated Richards equation in time. The scheme is of second order and explicit in nature but requires the action of the matrix function φ(A) = A−1(eA − I) on a suitability defined vector v at each time step. When the matrix A is large and sparse, φ(A)v can be approximated by Krylov su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999